## 173. Reaction Mechanism of the Oxidation of Hydrogen Bromide.

By Zoltán Szabó and Elizabeth Kiss.


#### Abstract

Experiments have been made to elucidate the mechanism of hydrogen bromide oxidation in the temperature range $490-635^{\circ}$. The velocity constants depend on the total pressure. Corresponding to this fact a reaction scheme is suggested, the accuracy of which is shown by the constancy of the computed velocity constants. The activation energy and the steric factor proved to be plausible values. With the aid of these quantities the calculated velocity constants agree quite satisfactorily with the empirical ones.


Hitherto the only publications relating to this reaction have been mainly of a qualitative nature (Ballard, Ann. Chim. Phys., 1826, 32, 349; Pogg. Ann., 1826, 8, 321 ; Richardson, J., 1887, 51, 804), the work of Berthelot (Compt. vend., 1878, 87, 670 ; Ann. Chim. Phys., 1879, 16, 446) and Abel (Abegg's " Handbuch," Bd. IV, 2, 5, 276) not being of sufficient accuracy. In Harteck and Kopsch's experiments (Z. Elektrochem., 1930, 36, 715) the oxidation was effected by oxygen atoms, so was not relevant to our work. We therefore investigated the reaction by a modern technique.

## Experimental.

Apparatus.-The reactants were mixed in a vessel of resistance glass, and the pressure change of the reaction $4 \mathrm{HBr}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Br}_{2}$ was measured by a Bodenstein quartz spiral manometer, used as a null instrument. The reaction vessel was separated from the other parts of the apparatus by a Bodenstein glass valve. The connexion between the resistance glass, the normal glass, and the quartz tube was made by a ground-glass joint, which was also secured by sealing wax. The vessel was heated in an electric furnace of high heat capacity, and temperature was regulated by rheostats and checked by an electric pyrometer. The gases were kept in stock vessels, which led into the common pipe of the glass valve. The apparatus was exhausted by a mercury-diffusion pump.

Preparation of Gases.-The hydrogen bromide was prepared by Fileti's method (Gazzetta, 1891, 21, 64). The evolved hydrogen bromide was scrubbed on glass beads covered with red phosphorus, suspended in a concentrated solution of hydrogen bromide, then conducted through six freezing-out tubes, the temperatures of which were arranged at intervals from $-20^{\circ}$ to $-80^{\circ}$, so as to free it from the last traces of water. The pure gas condensed in the final tube was distilled into the stock vessel, the first and the last fraction being rejected.

The oxygen, from a cylinder, was purified by Stock and Ritter's method ( $Z$. physikal. Chem., 1926, 124, 210). The gas was conducted through concentrated alkali, then over granulated calcium chloride and phosphoric oxide. The nitrogen was led over heated copper and through concentrated potassium hydroxide, then over calcium chloride and phosphoric oxide to free it from traces of water.

In an experiment the order of introduction of the gases was hydrogen bromide, nitrogen, and oxygen.
Results.-At $166^{\circ}$ no reaction was detectable, and between $345^{\circ}$ and $435^{\circ}$ it was very slow, so we conducted experiments at $490^{\circ}, 520^{\circ}, 550^{\circ}, 560^{\circ}, 575^{\circ}, 605^{\circ}$, and $635^{\circ}$.

As the simplest mechanism of the oxidation we assumed the following sequence ( $k_{1}, k_{2}$, and $k_{3}$ being the velocity constants) :

$$
\begin{aligned}
& \mathrm{HBr}+\mathrm{O}_{2}=\mathrm{HOOBr} . \quad k_{1} \\
& \mathrm{HOOBr}+\mathrm{HBr}=2 \mathrm{HOBr} . \quad \text {. . . . . . . . } k_{2} \\
& \mathrm{HOBr}+\mathrm{HBr}=\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \text {. . . . . . . . . } k_{3}
\end{aligned}
$$

From Bodenstein's principle of the stationary concentration of intermediate products, this leads to

$$
\begin{equation*}
-\mathrm{d}[\mathrm{HBr}] / \mathrm{d} t=3 k_{1}[\mathrm{HBr}]\left[\mathrm{O}_{2}\right] \tag{1}
\end{equation*}
$$

The velocity constant was calculated from the equation $\mathrm{d} x / \mathrm{d} t=k\left(a-x_{1}\right)\left(b-x_{2}\right)$ from point to point. The measured constant, $k$, would therefore be equal to $3 k_{1}$.

The course of some typical experiments is shown in Table I. The velocity constants thus obtained were reasonably constant for any one experiment (although decreasing slightly) but they rose rapidly with decreasing initial pressure, as shown in col. 4 of Table II. This inhibitory influence of total pressure could be interpreted by insertion of another stage involving a slackening by any gas molecule M:
$\mathrm{HOOBr}+\mathrm{M}=\mathrm{HBr}+\mathrm{O}_{2}+\mathrm{M} .$. velocity constant $k_{1}{ }^{\prime}$.
This leads to the equation

$$
\begin{equation*}
-\frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{d} t}=\frac{3 k_{1}[\mathrm{HBr}]\left[\mathrm{O}_{2}\right]}{1+k_{1}^{\prime}[\mathrm{M}] / k_{2}[\mathrm{HBr}]} \tag{2}
\end{equation*}
$$

Calculation from this formula is complicated because $k_{1}^{\prime} / k_{2}$ occurs in the denominator, but by trial, a value of 6 for this ratio was found to lead to satisfactory constancy (see col. 5, Table II). However, this value was independent of temperature, and a similar phenomenon is to be found in the combination of hydrogen and bromine.

Table $I$.
Experiments at $575^{\circ}$.

Time. Press., mins mm

| 0 | 253 |  |
| ---: | ---: | ---: |
| $\mathbf{3}$ | 247 | 6 |
| 6 | 243 | 10 |
| 10 | 239 | 14 |
| 15 | 236 | 17 |

$\Delta p / 3 k_{1} \times 10^{4} .3 k_{1} \times 10^{3}$. Time, Press., $\Delta t$. from (1). from (2). mins. mm. $\Delta p$
No. 50. $\left[\mathrm{O}_{2}\right]=40 \cdot 0 \mathrm{~mm} . ;[\mathrm{HBr}]=213 \cdot 0 \mathrm{~mm}$.

$$
\text { No. } 52 .
$$

| 0 | 307 | - |
| ---: | :--- | :---: |
| 3 | 299 | 8 |
| 6 | $296 \cdot 5$ | $10 \cdot 5$ |
| 10 | 293 | 14 |
| 18 | 291 | 16 |

--
$2 \cdot 67$
0.83
0.87
0.25 $\left[\mathrm{O}_{2}\right]=$

| - | - | - |  |
| :--- | :--- | :--- | :--- |
| 2.0 |  | $3 \cdot 1$ | 2.75 |
| 1.3 | 2.6 | 2.5 |  |
| 1.0 | 2.45 | 2.5 |  |
| 0.6 | 1.8 | 1.9 |  |


| 21 | 233 | 20 |
| :--- | :--- | :--- |
| 37 | 228 | 25 |
| 45 | 226 | 27 |
| 55 | 224 | 29 |
| 72 | 221 | 32 |


| 0.50 | 1.9 | $2 \cdot 2$ |
| :--- | ---: | ---: |
| 0.31 | 1.8 | 2.4 |
| 0.25 | 1.8 | 2.5 |
| 0.20 | 1.9 | $2 \cdot 8$ |
| 0.176 | 2.6 | $(4 \cdot 3)$ |

No. 55. $\left[\mathrm{O}_{2}\right]=40 \cdot 0 \mathrm{~mm}$. ; $[\mathrm{HBr}]=122 \cdot 3 \mathrm{~mm}$.

| 0 | $162 \cdot 3$ | - |
| ---: | ---: | ---: |
| 3 | $155 \cdot 3$ | $7 \cdot 0$ |
| 5 | $153 \cdot 7$ | $8 \cdot 6$ |
| 8 | $152 \cdot 5$ | $9 \cdot 8$ |
| 14 | $150 \cdot 5$ | $11 \cdot 8$ |


| 0 | $251 \cdot 7$ | - | - | - | - | 20 | $229 \cdot 5$ | $22 \cdot 2$ | $0 \cdot 340$ | $0 \cdot 84$ |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $242 \cdot 2$ | $9 \cdot 5$ | $4 \cdot 75$ | $4 \cdot 6$ | $(7 \cdot 8)$ | 28 | $227 \cdot 3$ | $24 \cdot 4$ | $0 \cdot 275$ | $0 \cdot 89$ |
| $4 \cdot 0$ |  |  |  |  |  |  |  |  |  |  |
| $5 \cdot 5$ | $236 \cdot 8$ | $14 \cdot 9$ | $1 \cdot 54$ | $2 \cdot 1$ | $(4 \cdot 4)$ | 40 | $225 \cdot 9$ | $25 \cdot 8$ | $0 \cdot 117$ | $0 \cdot 47$ |
| 8 | $235 \cdot 0$ | $16 \cdot 7$ | $0 \cdot 72$ | $1 \cdot 1$ | $2 \cdot 6$ | 51 | $225 \cdot 1$ | $26 \cdot 6$ | $0 \cdot 073$ | $0 \cdot 34$ |
| 11 | $233 \cdot 1$ | $18 \cdot 6$ | $0 \cdot 63$ | $1 \cdot 1$ | $3 \cdot 0$ | 70 | $223 \cdot 5$ | $28 \cdot 2$ | $0 \cdot 084$ | $0 \cdot 56$ |
| 15 | $231 \cdot 2$ | $20 \cdot 5$ | $0 \cdot 47$ | $1 \cdot 0$ | $3 \cdot 0$ |  |  |  |  |  |


| 0 | $322 \cdot 8$ | - | - | - | - | 25 | 311.6 | 11.2 | $0 \cdot 186$ | $0 \cdot 73$ | $3 \cdot 8$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $319 \cdot 0$ | $3 \cdot 8$ | 1.27 | 2.5 | (7-4) | 33 | $310 \cdot 7$ | $12 \cdot 1$ | $0 \cdot 113$ | $0 \cdot 50$ | $2 \cdot 8$ |
| 7 | $316 \cdot 2$ | 6.6 | $0 \cdot 70$ | 1.7 | (6.1) | 45 | $309 \cdot 8$ | $13 \cdot 0$ | 0.075 | 0.38 | $2 \cdot 4$ |
| 12 | 314.3 | 8.5 | $0 \cdot 38$ | $1 \cdot 1$ | (4.5) | 60 | 308.7 | $14 \cdot 1$ | 0.073 | $0 \cdot 44$ | 3-25 |
| 18 | $312 \cdot 9$ | 9.9 | $0 \cdot 23$ | $0 \cdot 79$ | $3 \cdot 6$ | 110 | 307-4 | $15 \cdot 4$ | 0.026 | $0 \cdot 20$ | $1 \cdot 9$ |

No. 66. $\quad \mathrm{O}_{2}=29.6 \mathrm{~mm}$. $\mathrm{HBr}=150.0 \mathrm{~mm} . ; \mathrm{N}_{2}=119.4 \mathrm{~mm}$.

| 0 | $299 \cdot 0$ | - | - | - | 32 | $285 \cdot 5$ | $13 \cdot 5$ | $0 \cdot 200$ | $1 \cdot 3$ | $2 \cdot 4$ |
| ---: | ---: | ---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | $295 \cdot 2$ | $3 \cdot 8$ | $1 \cdot 27$ | $3 \cdot 6$ | $(5 \cdot 1)$ | 45 | $283 \cdot 7$ | $15 \cdot 3$ | $0 \cdot 138$ | $1 \cdot 1$ |
| 7 | $293 \cdot 8$ | $5 \cdot 2$ | $0 \cdot 35$ | $1 \cdot 1$ | $1 \cdot 6$ | 60 | $282 \cdot 1$ | $16 \cdot 9$ | $0 \cdot 106$ | $1 \cdot 0$ |
| 11 | $291 \cdot 2$ | $7 \cdot 8$ | $0 \cdot 65$ | $2 \cdot 5$ | $3 \cdot 9$ | 75 | $280 \cdot 0$ | $19 \cdot 0$ | $0 \cdot 140$ | $1 \cdot 8$ |
| 16 | $289 \cdot 0$ | $10 \cdot 0$ | $0 \cdot 44$ | $2 \cdot 0$ | $3 \cdot 4$ | 100 | $278 \cdot 0$ | $21 \cdot 0$ | $0 \cdot 080$ | $1 \cdot 4$ |
| 22 | $287 \cdot 5$ | $11 \cdot 5$ | $0 \cdot 25$ | $1 \cdot 3$ | $2 \cdot 3$ | 140 | $276 \cdot 6$ | $22 \cdot 4$ | $0 \cdot 035$ | $0 \cdot 80$ |

Note to Table.-The first, and sometimes the second, value of the velocity constants was higher than the later ones. We could not find any reason for this. Later, the process became stabilized and the velocity constants became suitably constant for one experiment. For the calculation of the mean values of the velocity constant only these stabilized values were taken. In Tables II and III the relation between the corresponding partial pressures and the mean velocity constants cannot be examined exactly, because the partial pressures given are initial values. The velocity constants in the tables were only calculated after the second or third readings, when the partial pressures, especially in the case of HBr , differ already considerably from the initial values. The strict validity of formula (2), as is shown by the experiments cited, refers only to this stabilized zone.

Table II.
Experiments at $575^{\circ}$ (concentrations in mm. of Hg ).

| $\mathrm{pO}_{2}$. | $p_{\text {Hir }}$. | Total press. | $\begin{aligned} & 3 k_{1} \times 10^{4} \\ & \text { from }(1) . \end{aligned}$ | $\begin{aligned} & 3 k_{1} \times 10^{3} \\ & \text { from }(2) . \end{aligned}$ | $\mathrm{PO}_{\mathbf{2}}$. | $p_{\text {HBr }}$. | Total press. | $\begin{aligned} & 3 k_{1} \times 10^{4} \\ & \text { from (1). } \end{aligned}$ | $\begin{aligned} & 3 k_{1} \times 10^{3} \\ & \text { from }(2) . \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{258}{ }^{\text {P }} 6$ | 60.0 | 318.6 | $0 \cdot 18$ | $2 \cdot 8$ | $40 \cdot 0$ | $122 \cdot 3$ | 162.3 | 1.55 | $2 \cdot 6$ |
| 203.0 | 104.0 | $307 \cdot 0$ | $0 \cdot 33$ | $2 \cdot 4$ | 142.5 | $75 \cdot 1$ | $217 \cdot 6$ | $0 \cdot 58$ | $2 \cdot 2$ |
| $122 \cdot 9$ | 128.8 | $251 \cdot 7$ | $0 \cdot 79$ | $2 \cdot 9$ | $40 \cdot 0$ | 213.0 | $253 \cdot 0$ | $1 \cdot 85$ | $2 \cdot 4$ |
| 121.0 | 118.0 | $239 \cdot 0$ | $0 \cdot 89$ | $2 \cdot 7$ | $41 \cdot 8$ | $157 \cdot 3$ | 199•1 | 1.93 | $2 \cdot 4$ |
| $100 \cdot 1$ | $106 \cdot 4$ | $206 \cdot 5$ | $1 \cdot 1$ | $3 \cdot 3$ | 118.7 | 293.7 | 412.4 | $1 \cdot 55$ | $3 \cdot 3$ |
| 102.0 | $97 \cdot 0$ | $199 \cdot 0$ | $1 \cdot 2$ | $3 \cdot 2$ | $34 \cdot 2$ | $115 \cdot 0$ | $149 \cdot 2$ | $1 \cdot 62$ | $2 \cdot 25$ |

Table III.
Experiments at $575^{\circ}$ (concentrations in mm. of Hg ).

| $\mathrm{PO}_{2}$. | $p_{\mathrm{HBr}}$. | $\mathrm{PN}_{\mathbf{1}}$. | Total press. | $\begin{aligned} & 3 k_{1} \times 10 \\ & \text { from }(1) \end{aligned}$ | $\begin{aligned} & 3 k_{1} \times 10^{3} \\ & \text { from }(2) . \end{aligned}$ | $\mathrm{PO}_{\mathbf{o}}$. | $\mathrm{PHBr}^{\text {. }}$ | $p_{\mathrm{N}_{2}}$. | Total press. | $\begin{aligned} & 3 k_{1} \times 10^{4} \\ & \text { from (1). } \end{aligned}$ | $\begin{aligned} & 3 k_{1} \times 10^{3} \\ & \text { from }(2) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $46 \cdot 6$ | $65 \cdot 3$ | $264 \cdot 1$ | $376 \cdot 0$ | 0.39 | $2 \cdot 5$ | $29 \cdot 6$ | $150 \cdot 0$ | $119 \cdot 4$ | $299 \cdot 0$ | 1.51 | $2 \cdot 8$ |
| $80 \cdot 5$ | $81 \cdot 6$ | $160 \cdot 7$ | $322 \cdot 8$ | $0 \cdot 69$ | $2 \cdot 9$ | $50 \cdot 0$ | $202 \cdot 5$ | $98 \cdot 4$ | $350 \cdot 9$ | $1 \cdot 03$ | $2 \cdot 2$ |
| $122 \cdot 0$ | $62 \cdot 6$ | $119 \cdot 7$ | $304 \cdot 3$ | 0.65 | $3 \cdot 5$ | $42 \cdot 1$ | $158 \cdot 9$ | $315 \cdot 2$ | $516 \cdot 2$ | 0.91 | $3 \cdot 7$ |
| $56 \cdot 0$ | $99 \cdot 6$ | $99 \cdot 6$ | $255 \cdot 2$ | 0.95 | $2 \cdot 6$ | $50 \cdot 2$ | 200.3 | $99 \cdot 1$ | $349 \cdot 6$ | $1 \cdot 56$ | $3 \cdot 4$ |
| $59 \cdot 4$ | 119.8 | $59 \cdot 7$ | 238.9 | $1 \cdot 62$ | $2 \cdot 9$ |  |  |  |  |  |  |

Table IV.
Experiments at $635^{\circ}$ (concentrations in mm. of Hg ).

| $\mathrm{PO}_{\mathbf{2}}$. | $p_{\text {Hir }}$. | $p_{\mathrm{N}_{2}}$. | Total press. | $\begin{aligned} & 3 k_{1} \times 10^{3} \\ & \text { from }(2) . \end{aligned}$ | $\mathrm{PO}_{\mathbf{2}}$. | $p_{\text {Hir }}$. | $p_{\mathrm{N}_{2}}$. | Total press. | $\begin{aligned} & 3 k_{1} \times 10^{3} \\ & \text { from (2). } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51.4 | $143 \cdot 5$ | Pr | 194.9 | 11.0 | $57 \cdot 1$ | 193.0 | $94 \cdot 8$ | $344 \cdot 9$ | 4.5 |
| $38 \cdot 9$ | $91 \cdot 2$ | $109 \cdot 9$ | $240 \cdot 0$ | $12 \cdot 7$ | $61 \cdot 7$ | $54 \cdot 0$ | 291.8 | $406 \cdot 5$ | $38 \cdot 1$ |
| $260 \cdot 4$ | $187 \cdot 6$ | - | 248.0 | $7 \cdot 7$ | $60 \cdot 9$ | 183.2 | - | $244 \cdot 1$ | $8 \cdot 7$ |
| $200 \cdot 8$ | $106 \cdot 4$ | - | $307 \cdot 2$ | $13 \cdot 7$ | $177 \cdot 4$ | $88 \cdot 6$ | - | $266 \cdot 0$ | $12 \cdot 1$ |
| 104.2 | 102.3 | 98.6 | 324.9 | 9.51 | 101.8 | $103 \cdot 0$ | - | $204 \cdot 8$ | 11.8 |

As M stands for any molecule, an inert gas also accelerates the decomposition of the complex HOOBr , by which the reaction has been inhibited. In many experiments we have diluted the concentration of the reactants with nitrogen, thus increasing the total pressure. The results are summarised in Table III.

The experiments at $490^{\circ}, 520^{\circ}, 550^{\circ}, 560^{\circ}$, and $605^{\circ}$ led to the same result. The velocity constant depends in just the same way upon the total pressure, as the added neutral gas slackens the reaction according to equation (2).

The mean values of all experiments are summarised in the Table V.
Experiments at $635^{\circ}$ did not give reproducible constants (see Table IV), especially with vessels that had undergone long heating at this temperature, and we attribute this to a change in the structure of the wall of the vessel. That this lack of constancy is not due to impurities in the gas follows from control experiments at $575^{\circ}$, which were satisfactory.

Homogeneity of the Reaction.-As a further test of the homogenity of the reaction, we increased the ratio of surface to volume about 70 -fold by filling the vessel with capillary rings of the same glass, and although the constants were slightly different from those obtained before (being higher at low temperatures and vice versa), the deviation was of a smaller order of magnitude than the above ratio, and we deduce that the glass wall is only responsible for less than $5 \%$ of the total reaction.

Discussion.-It is first necessary to convert $k$ from the units mm./min. to mols. $1 .^{-1} \mathrm{sec} .^{-1}$, and the values of $\log k_{c}$ thus obtained are in line 2 of Table V. From the data at $833^{\circ}$ and

| Table V. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t^{\circ} \mathrm{C}$. | 490 | 520 | 550 | 560 | 575 | 605 |
| $T^{\circ}$, к. | 763 | 793 | 823 | 833 | 848 | 878 |
| $k_{p} \times 10^{3}$, exp. $\ldots \ldots \ldots \ldots$. | $0 \cdot 3878$ | $1 \cdot 39$ | 2.028 | $2 \cdot 308$ | 3.003 | 7.941 |
| $\log k_{e}$, exp. $\ldots \ldots \ldots \ldots \ldots$. | $-0.979$ | $-0.494$ | $-0.228$ | $-0.150$ | $-0.045$ | $0 \cdot 353$ |
| $\log k_{e}$, calc. .............. | -1.034 | $-0.616$ | $-0.236$ | $-0.117$ | $0 \cdot 062$ | $0 \cdot 398$ |

$878^{\circ}$ K., and with $\log k_{1}=0.353$ and 0.150 , respectively, we obtain the activation energy $Q=37 \cdot 3$ kcals. From this we determine the theoretical values of $k_{c}$ by the formula

$$
\begin{equation*}
\log k_{c}=-Q / 4,571 T+\frac{1}{2} \log T+\log Z_{0}+\log f \tag{3}
\end{equation*}
$$

where $Z_{0}$ is the collision number at $l^{\circ} \mathrm{K}$. and $f$ is the steric factor. For the calculation of $Z$ from the formula

$$
Z=5.64 \times 10^{28} s_{1} s_{2} \sqrt{T} \sqrt{\left(M_{1}+M_{2}\right) / M_{1} M_{2}}
$$

we have $M_{1}($ for HBr$)=82.294 ; \quad M_{2}\left(\right.$ for $\left.\mathrm{O}_{2}\right)=32.000 ; s_{1}($ for HBr$)=3.06 \mathrm{~A}$; $s_{2}$ (for $\mathrm{O}_{2}$ ) $=3.2 \mathrm{~A}$.; whence we find $\log Z_{0}=10.061 \mathrm{mols} . .^{-1} \mathrm{sec} .^{-1}$ at $1^{\circ} \mathrm{K}$. Insertion of this 3 I
value into (3) with one value of $k_{c}$ gives $\log f=-1.826$ or $f=0.015$, a value often found in similar reactions. Substitution of this value in the equation giving $k_{c}$ leads to the values in line 3 of Table V. The agreement between the experimental and the calculated values, coupled with the plausible values for $Q$ and $f$, affords strong support for the mechanism outlined.

No information can be obtained as to the individual values of $k_{1}^{\prime}$ and $k_{2}$, their ratio having been found by trial and error. If $k_{1}^{\prime} / k_{2}$ is made larger than 10 or smaller than $0 \cdot 1, k_{c}$ becomes markedly dependent upon pressure. Moreover, the ratio 1 leads to an improbably small value of $f$, whereas if $k_{1}{ }^{\prime} / k_{2}=10, \log f=-1 \cdot 355$, the probable upper limit.

Hence, the oxidation of hydrogen bromide is a catalysed reaction type. The added inert gas inhibits the process. The inhibitory effect is manifested by the decomposition of the intermediate complex. The oxidation of hydrogen bromide is therefore, in our opinion, unique as a case of a negative catalysis through deactivation in a thermal reaction, no examples of this kind of catalysis having yet been reported (see Schwab, Taylor, and Spence, " Catalysis," New York, 1937).

Institute for General and Physical Chemistry,
University of Szeged, Szeged, Hungary.

